Volatile organic compounds in health and disease: a breathtaking breakthrough?

Kevin Lamote, PhD
kevin.lamote@uantwerpen.be

Research Club
October 4, 2017
Overview

• The world of "-omics"

• Volatile Organic Compounds (VOCs)
 • Origin
 • Breath biopsy
 • Stool, blood, tissue

• Technology

• Applications
 • Biomarker
 • Precision medicine
 • Patient selection
 • Monitoring
 • Early detection/screening

• Future perspectives
The world of "-omics"
Breath analysis
Volatile Organic Compounds (VOCs)

Van der Schee et al. Chest. 2015
Historical breath analysis

ANNUAL NUMBER OF BREATH VOC PUBLICATIONS

- volatile organic compound AND breath

YEAR

NUMBER OF PUBLICATIONS

VOC analysis
Key factors – What to consider

• Sampling
 • Online
 • Offline
 • Bags (Tedlar, Mylar)
 • Canisters (Stainless steel)
 • Adsorbent tubes (TenaxGR)
 • Solid phase microextraction (SPME) fibers

• Sources

<table>
<thead>
<tr>
<th></th>
<th>Breath</th>
<th>Blood</th>
<th>Urine</th>
<th>Stool</th>
<th>Skin</th>
<th>cell lines/bacteria</th>
</tr>
</thead>
</table>
Breath Analysis

Techniques

Van der Schee et al. Chest. 2015
Breath Analysis Techniques

- Gas chromatography – mass spectrometry (GC-MS)
Breath Analysis Techniques

• Gas chromatography – mass spectrometry (GC-MS)

Lamote K et al. Cancer Epidemiol Biomark Prev, 2014
Breath Analysis Techniques

- Electronic nose (eNose)
Breath Analysis Techniques

- Multicapillary column - ion mobility spectrometry (MCC/IMS)

Lamote K et al. Cancer Epidemiol Biomark Prev, 2014
Breath Analysis Techniques

- Animals
Breath Analysis Methods

<table>
<thead>
<tr>
<th>GC-MS</th>
<th>eNose</th>
<th>IMS</th>
<th>Canine scent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive (pp<sub>m</sub>-pp<sub>v</sub>)</td>
<td>No Specific VOC identification</td>
<td>Sensitive (pp<sub>b</sub>-pp<sub>v</sub>)</td>
<td>Time consuming (dog training)</td>
</tr>
<tr>
<td>Identification, detection, quantification of VOCs</td>
<td>Black box</td>
<td>VOC identification possible with MCC column</td>
<td>No quantification/identification of VOCs</td>
</tr>
<tr>
<td>Vacuum conditions</td>
<td>Ambient conditions</td>
<td>Ambient conditions</td>
<td>Ambient conditions</td>
</tr>
<tr>
<td>Slow</td>
<td>Fast, easy</td>
<td>Fast, easy</td>
<td>Fast, easy</td>
</tr>
<tr>
<td>Offline sampling</td>
<td>Offline sampling</td>
<td>Online sampling</td>
<td>Online sampling</td>
</tr>
<tr>
<td>Large, immovable set-up</td>
<td>Transportable</td>
<td>Transportable</td>
<td>Transportable</td>
</tr>
<tr>
<td>Very expensive</td>
<td>Cheap</td>
<td>Cheap</td>
<td>Expensive</td>
</tr>
<tr>
<td>Specific technician training</td>
<td>No specific operator training</td>
<td>No specific operator training</td>
<td>No specific operator training</td>
</tr>
<tr>
<td>Gold standard</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: pp_b, parts per billion by volume; pp_m, parts per million by volume; pp_v, parts per trillion by volume.
Breath Analysis
Applications

• Clinical diagnostics and prognosis (*infections*)
• Early detection and screening (*cancer*)
• Disease monitoring (*COPD exacerbations*)
• Precision medicine
 • Companion diagnostics
 • Patient stratification (*eos-neutro asthma, cancer mutations ...*)
 • Treatment response (*corticosteroid response*)
 • Toxicity (*radiation, pollution*)
Breath Analysis

Approved applications

<table>
<thead>
<tr>
<th>Test</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capnography</td>
<td>CO₂</td>
</tr>
<tr>
<td>¹³C-urea breath test for H. pylori infection</td>
<td>¹³CO₂</td>
</tr>
<tr>
<td>Neonatal jaundice</td>
<td>CO</td>
</tr>
<tr>
<td>Disaccharaide adsorption deficiency</td>
<td>H₂, CH₄</td>
</tr>
<tr>
<td>Monitoring asthma therapy</td>
<td>FeNO</td>
</tr>
<tr>
<td>Heart transplant rejection</td>
<td>Alkanes</td>
</tr>
<tr>
<td>¹³C-octanoic acid Gastric Emptying Breath test</td>
<td>¹³CO₂</td>
</tr>
<tr>
<td>CO testing smokers</td>
<td>CO</td>
</tr>
<tr>
<td>Roadside intoxication</td>
<td>CH₃CH₂OH</td>
</tr>
</tbody>
</table>
Breath Analysis
Applications

Breath VOCs reported for a wide range of diseases:

- Head and neck cancer
- Asthma and COPD
- Pulmonary embolism
- Breast cancer
- Acute respiratory distress syndrome
- Artherosclerosis
- Liver cancer
- Liver cirrhosis
- Alcohol hepatitis
- Non-alcohol fatty liver disease
- Diabetes
- Inflammatory bowel disease
- Schizophrenia
- Tuberculosis
- Mesothelioma
- Lung cancer
- Cystic fibrosis
- Heart disease
- Gastric cancer
- H. pylori infection
- Renal failure
- Carbohydrate malabsorption
- Colorectal cancer
- Rheumatoid arthritis
Breath Analysis
Asthma

- 63 asthmatic children
- 57 healthy control children
- 95% specificity, 89% sensitivity, 92% accuracy

Table 2. Overview of the most important components used to discriminate asthma patients from healthy controls

<table>
<thead>
<tr>
<th>Number*</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Branched) hydrocarbon (C_{13}H_{28})</td>
</tr>
<tr>
<td>2</td>
<td>Carbon disulphide (CS_{2})</td>
</tr>
<tr>
<td>3</td>
<td>1-penten-2-on</td>
</tr>
<tr>
<td>4</td>
<td>butanoic acid</td>
</tr>
<tr>
<td>5</td>
<td>3-(1-methylethyl)-benzene</td>
</tr>
<tr>
<td>6</td>
<td>(Branched) hydrocarbon (C_{13}H_{28})</td>
</tr>
<tr>
<td>7</td>
<td>Unsaturated hydrocarbon (C_{15}H_{26})</td>
</tr>
<tr>
<td>8</td>
<td>Benzoic acid</td>
</tr>
<tr>
<td>9</td>
<td>p-xylene</td>
</tr>
<tr>
<td>10</td>
<td>(Branched) hydrocarbon (C_{11}H_{24})</td>
</tr>
</tbody>
</table>

*Numbers represent the order in which the components were included in the discriminant analysis.

Dallinga et al. Clinical & Experimental Allergy, 2009
Breath Analysis
Asthma

• 10 young patients with mild asthma
• 10 older patients with severe asthma
• 10 young / 10 older healthy controls

• Mild vs healthy: 100%
• Severe vs Healthy: 90%
• Mild vs severe: 65%
Breath Analysis
Asthma

- Phenotyping:
 - 35 asthmatic patients
 - 23 matched healthy controls

Table 3: Receiver operating characteristics of the multivariate models for the asthma phenotypes of interest

<table>
<thead>
<tr>
<th></th>
<th>Eosinophilic versus non-eosinophilic</th>
<th>Neutrophilic versus non-neutrophilic</th>
<th>Controlled versus not controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.75</td>
<td>0.80</td>
<td>0.89</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.90</td>
<td>0.75</td>
<td>0.88</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>0.86</td>
<td>0.80</td>
<td>0.89</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>0.82</td>
<td>0.75</td>
<td>0.88</td>
</tr>
<tr>
<td>AUROC (95% CI)</td>
<td>0.98 (0.91 to 1.00)</td>
<td>0.90 (0.76 to 1.00)</td>
<td>0.97 (0.93 to 1.00)</td>
</tr>
<tr>
<td>Cross-validation accuracy</td>
<td>83%</td>
<td>72%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Leave-one-out cross-validation accuracy from discriminant function analysis also shown.
AUROC, area under the receiver operating characteristic.

Figure 2: Receiver operating characteristic curves for the models predicting eosinophilic versus non-eosinophilic asthma (solid line); neutrophilic versus non-neutrophilic asthma (dashed line) and controlled versus uncontrolled asthma (dotted line).

Ibrahim et al. Thorax, 2011
Breath Analysis
Asthma

• Steroid responsiveness:
 • asthmatic patients (11 steroid responsive, 7 unresponsive)
Breath Analysis COPD

- 30 COPD patients
- 20 asthmatic patients
- 40 controls (20 non-smoking and 20 smoking)

Fens et al. Am J Respir Crit Care Med, 2009
Breath Analysis
COPD

• Infections in acute exacerbations:
 • 43 COPD patients
 • 22 bacterial infections, 18 viral infections (9 both viral and bacterial infections)
 • 12 no infections

Breath Analysis
COPD

- COPD vs Lung Cancer:
 - 10 Lung cancer, 10 COPD

Acc: 85%

Dragonieri et al. Lung Cancer, 2009
Breath Analysis
Oncology – Lung cancer

• Poor prognosis
• Early detection proven to increase patients outcome
 • Low dose CT screening reduced mortality by 20%
• Breath analysis for screening for cancer?
<table>
<thead>
<tr>
<th>Group</th>
<th>Method</th>
<th>Patients</th>
<th>Controls</th>
<th>Model Characteristics</th>
<th>VOCs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon et al. (1985)</td>
<td>TD-GC-MS</td>
<td>12 LC</td>
<td>17 HC</td>
<td>Acc: 93%</td>
<td>Acetone, methylethylketone, n-propanol</td>
<td></td>
</tr>
<tr>
<td>Phillips et al. (1999)</td>
<td>TD-GC-MS</td>
<td>60 LC</td>
<td>48 HC</td>
<td>Se: 71.7% Sp: 66.7%</td>
<td>Styrene, 2,2,4,6,6-pentamethyheptane, 2-methylheptane, Decane, propylbenzene, Undecane, methylcyclopentane, 1-methyl-2-pentylcyclopropane, trichlorofluoro-methane, benzene, 1,2,4-trimethyl-benzene, isoprene, 3-methyloctane, 1-hexene, 3-methylnonane, 1-heptene, 1,4-dimethylbenzene, 2,4-dimethyl-heptane, Hexanal, Cyclohexane, 1-methylcyclopentyl-benzene, Hepatanal</td>
<td></td>
</tr>
<tr>
<td>Phillips et al. (1999)</td>
<td>TD-GC-MS</td>
<td>82 LC</td>
<td>91 non-cancer 41 HC</td>
<td>Se: 85.1% Sp: 80.5%</td>
<td>C₄-C₂₀ monomethylated alkanes</td>
<td>No effect stage, smoking, histology</td>
</tr>
<tr>
<td>Phillips et al. (2003)</td>
<td>TD-GC-MS</td>
<td>82 LC</td>
<td>91 non-cancer 41 HC</td>
<td>Se: 85.1% Sp: 80.5%</td>
<td>2-methylpentane, isoprene, pentane, ethylbenzene, xylene, trimethylbenzene, toluene, benzene, heptane, decane, styrene, octane, pentamethylheptane</td>
<td></td>
</tr>
<tr>
<td>Poli et al. (2005)</td>
<td>SPME-GC-MS</td>
<td>36 NSCL 25 COPD</td>
<td>35 smokers 50 non-smokers</td>
<td>Se: 80%</td>
<td>Acetonitrile, 2,5-dimethylfuran, benzene</td>
<td></td>
</tr>
<tr>
<td>Ligor et al. (2009)</td>
<td>SPME-GC-MS</td>
<td>65 LC</td>
<td>31 Controls</td>
<td>-</td>
<td>2-methylpentane, 1-propanol, 3-butyn-2-ol, benzaldehyde, 3-methylpentane, n-pentane, n-hexane, 2-butanone</td>
<td>Acetonitrile, 2,5-dimethylfuran, benzene ~smoking</td>
</tr>
<tr>
<td>Chen et al. (2007)</td>
<td>SPME-GC-MS</td>
<td>29 LC</td>
<td>13 HC</td>
<td>Se: 86.2% Sp: 69.2%</td>
<td>Styrene, decane, isoprene, benzene, Undecane, 1-hexene, Hexanal, Propylbenzene, 1,2,4-trimethylbenzene, Heptanal, Methylcyclopentane</td>
<td></td>
</tr>
<tr>
<td>Phillips et al. (2007)</td>
<td>SPME-GC-MS</td>
<td>193 LC</td>
<td>211 Controls</td>
<td>Se: 84.6% Sp: 80%</td>
<td>C₁₄-C₂₄ hydrocarbons</td>
<td>Independent of smoking, stage</td>
</tr>
<tr>
<td>Phillips et al. (2008)</td>
<td>SPME-GC-MS</td>
<td>193 LC</td>
<td>211 Controls</td>
<td>Se: 84.5% Sp: 81%</td>
<td>C₁₄-C₂₄ hydrocarbons</td>
<td>WDA, No influence of smoking</td>
</tr>
<tr>
<td>Gaspar et al. (2009)</td>
<td>SPME-GC-MS</td>
<td>30 LC</td>
<td>10 Controls</td>
<td>Se: 100% Sp: 100%</td>
<td>1-methyl-4-(1-methylethyl)benzene, toluene, dodecane, 3,3-dimethylpentane, 2,3,4-trimethyl hexane, 1,1'-((1-butene)bis benzene</td>
<td></td>
</tr>
<tr>
<td>Peng et al. (2010)</td>
<td>SPME-GC-MS</td>
<td>40 NSCL 38 non-smokers</td>
<td>Acc: 90%</td>
<td>C₅-C₉ aldehydes</td>
<td>No influence smoking, age</td>
<td></td>
</tr>
<tr>
<td>Song et al. (2010)</td>
<td>SPME-GC-MS</td>
<td>43 NSCL 41 HC</td>
<td>Se: 95.3-93% Sp:85.4-92.7%</td>
<td>1-butanol, 3-hydroxy-2-butanone</td>
<td>C₁₁-C₁₀ aldehydes</td>
<td>Stage independent</td>
</tr>
<tr>
<td>Fuchs et al. (2010)</td>
<td>SPME-GC-MS</td>
<td>12 LC</td>
<td>12 Smokers 12 non-smokers</td>
<td>Se: 75% (pentanal) Sp: 95.8%</td>
<td>Propane, isopropyl alcohol, carbon disulfide, ethyl benzene</td>
<td>No difference between SCLC and NSCLC</td>
</tr>
<tr>
<td>Rudnicka et al. (2011)</td>
<td>SPME-GC-MS</td>
<td>23 LC</td>
<td>30 HC</td>
<td>-</td>
<td>1-octene</td>
<td>LC pts were older, ethylbenzene~exogenous</td>
</tr>
<tr>
<td>Peled et al (2012)</td>
<td>SPME-GC-MS</td>
<td>53 LC</td>
<td>19 benign lung diseases</td>
<td>Acc: 88%</td>
<td>1-Octene</td>
<td></td>
</tr>
<tr>
<td>Wang et al. (2012)</td>
<td>SPME-GC-MS</td>
<td>88 LC</td>
<td>70 benign lung disease 85 HC</td>
<td>Se: 96.5% Sp: 97.5%</td>
<td>23 VOCs (abstract)</td>
<td>Stage independent</td>
</tr>
<tr>
<td>Poli et al. (2008)</td>
<td>SPME-GC-MS</td>
<td>36 NSCL</td>
<td></td>
<td></td>
<td>After resection: ↓ Isoprene, benzene ↑ Pentane, toluene, ethyl benzene</td>
<td></td>
</tr>
</tbody>
</table>
Breath Analysis
Oncology – Lung cancer

Lung Cancer → Ox stress → Inflammation

Alcohol dehydrogenase

alcohol

CYP-enzymes

Degradation

Fig. 1. Free radical-mediated lipid peroxidation: possible reactions and reaction products.
Breath Analysis
Oncology – Lung cancer

- Mutations

- 32 Adenocarcinoma, 10 squamous cell, 8 small cell
- 39 healthy controls

- n-dodecane

Handa et al. Plos One, 2014
Breath Analysis
Oncology – Lung cancer

• Mutations
 • 30 benign nodules
 • 89 lung cancer patients
 • 16 early stage, 73 advanced stage
 • 19 EGFR(+), 34 wild-type

<table>
<thead>
<tr>
<th>Group</th>
<th>Acc</th>
<th>Sens</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Lung Cancer vs. Benign Nodules</td>
<td>87%</td>
<td>75%</td>
<td>93%</td>
<td>88%</td>
<td>88%</td>
</tr>
<tr>
<td>EGFR mutation vs. wild type</td>
<td>83%</td>
<td>79%</td>
<td>85%</td>
<td>75%</td>
<td>88%</td>
</tr>
</tbody>
</table>

Shlomi et al. J Thorac Oncol, 2017
Breath Analysis
Oncology – Lung cancer

• Treatment
 • Surgery
 • 15 patients with suspicion for lung cancer were resected
 • 11 had early-stage lung cancer, 4 were benign
 • Breath sample at baseline and 3 weeks after resection

• 5 VOCs reduced after surgery
• Sens 100%
• Spec: 80%

Breath Analysis
Oncology – pleural mesothelioma

• Participants:
 • 21 healthy non asbestos-exposed individuals (HC)
 • 22 healthy occupational asbestos-exposed individuals (AEx)
 • 23 MPM patients (treatment-naive)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Outcome (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.87 (0.69 – 0.97)</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.70 (0.55 – 0.82)</td>
</tr>
<tr>
<td>PPV</td>
<td>0.61 (0.43 – 0.76)</td>
</tr>
<tr>
<td>NPV</td>
<td>0.91 (0.77 – 0.98)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.76 (0.64 – 0.98)</td>
</tr>
<tr>
<td>AUC_{ROC}</td>
<td>0.81 (0.69 – 0.91)</td>
</tr>
</tbody>
</table>

$\text{VOCs: } P1, P3, P5, P30, P50, P54, 7P1$
Breath Analysis
Oncology – pleural mesothelioma

• Participants:
 • 52 healthy non asbestos-exposed individuals (HC)
 • 59 healthy occupational asbestos-exposed individuals (AEx)
 • 41 patients with benign asbestos-related diseases (ARD)
 • 70 patients with benign non-asbestos-related diseases (BLD)
 • 56 primary lung cancer patients (LC)
 • 52 MPM patients (treatment-naive)

Breath Analysis
Oncology – pleural mesothelioma

<table>
<thead>
<tr>
<th></th>
<th>MPM vs AEx+ARD</th>
<th>MPM vs LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>94.2% (85.1%-98.5%)</td>
<td>73.1% (59.9%-83.8%)</td>
</tr>
<tr>
<td>Specificity</td>
<td>80.0% (71.3%-87.0%)</td>
<td>71.4% (58.7%-82.1%)</td>
</tr>
<tr>
<td>PPV</td>
<td>71.0% (59.6%-80.8%)</td>
<td>70.4% (57.3%-81.4%)</td>
</tr>
<tr>
<td>NPV</td>
<td>96.4% (90.5%-99.1%)</td>
<td>74.1% (61.2%-84.4%)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>84.9% (78.5%-89.9%)</td>
<td>72.2% (63.3%-80.0%)</td>
</tr>
</tbody>
</table>

VOCs (>50% of times selected):

AEx: asymptomatic former asbestos-exposed controls. ARD: patients with benign asbestos related diseases. AUC\textsubscript{ROC}: area under the receiver operator characteristic curve. MPM: malignant pleural mesothelioma. NPV: negative predictive value. PPV: positive predictive value. VOC: volatile organic compound.
Breath Analysis
Oncology – pleural mesothelioma

AEx: asymptomatic former asbestos-exposed controls. ARD: patients with benign asbestos-related diseases. AUC_{ROC}: area under the receiver operator characteristic curve. NPV: negative predictive value. PPV: positive predictive value. VOC: volatile organic compound.
Breath Analysis
Oncology – pleural mesothelioma

• Participants

<table>
<thead>
<tr>
<th></th>
<th>MPM vs AEx+ARD</th>
<th>AEx vs ARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100% (80.7%-100%)</td>
<td>60.0% (34.6%-81.9%)</td>
</tr>
<tr>
<td>Specificity</td>
<td>91.2% (77.9%-97.7%)</td>
<td>42.1% (21.9%-64.6%)</td>
</tr>
<tr>
<td>PPV</td>
<td>82.4% (59.2%-95.3%)</td>
<td>45.0% (24.7%-66.7%)</td>
</tr>
<tr>
<td>NPV</td>
<td>100% (90.8%-100%)</td>
<td>57.1% (31.2%-80.4%)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>93.8% (84.0%-98.4%)</td>
<td>50.0% (33.6%-66.4%)</td>
</tr>
<tr>
<td>AUC<sub>ROC</sub></td>
<td>0.943 (0.866-1.000)</td>
<td>0.365 (0.435-0.818)</td>
</tr>
</tbody>
</table>

VOCs:
- Diethyl ether
- Limonene
- Nonanal
- Cyclohexane
- VOC I_k 1287
- Isothiocyanatocyclohexane
- Hexane

Breath Analysis
Oncology – pleural mesothelioma

ROC Curve

<table>
<thead>
<tr>
<th></th>
<th>MPM vs AEx+ARD</th>
<th>AEx vs ARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>81.5% (63.7%-92.9%)</td>
<td>58.3% (30.3%-82.8%)</td>
</tr>
<tr>
<td>Specificity</td>
<td>54.5% (26.0%-81.0%)</td>
<td>46.7% (23.2%-71.3%)</td>
</tr>
<tr>
<td>PPV</td>
<td>81.5% (63.7%-92.9%)</td>
<td>46.7% (23.2%-71.3%)</td>
</tr>
<tr>
<td>NPV</td>
<td>54.5% (26.0%-81.0%)</td>
<td>58.3% (30.3%-82.8%)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>73.7% (58.1%-85.8%)</td>
<td>51.9% (33.4%-70.0%)</td>
</tr>
<tr>
<td>AUC<sub>ROC</sub></td>
<td>0.747 (0.582-0.913)</td>
<td>0.550 (0.322-0.778)</td>
</tr>
</tbody>
</table>

AEx: asymptomatic former asbestos-exposed controls. ARD: patients with benign asbestos related diseases. AUC_{ROC}: area under the receiver operator characteristic curve. HC: healthy controls. MPM: malignant pleural mesothelioma. NA: not applicable. NPV: negative predictive value. PPV: positive predictive value.

Urine Analysis
Oncology – colorectal cancer

- Fecal Immunochemical Testing (se: 66%-88%; sp: 87%-96%)
- Breath VOCs (37 CRC patients, 41 controls)

Acc: 85%, se: 86%, sp: 83%

VOC Analysis
Oncology – colorectal cancer

- Urine VOCs (83 CRC patients, 50 controls)

Acc: 74%, sens: 88%, spec: 60%

Arasaradnam et al, Plos One, 2014
Breath Analysis
Inflammatory bowel disease

• Crohn’s disease (CD)
• Ulcerative colitis (UC)

• Interaction between genes, environment and microbiome

• Accurate phenotyping:
 • Treatment selection
 • Endoscopy
Breath Analysis
Inflammatory bowel disease

- 25 CD patients
- 29 UC patients
- 22 Healthy Controls

Sens: 74%
Spec: 75%
AUC: 0.82

Sens: 67%
Spec: 67%
AUC: 0.70

Arasaradman et al. Dig Liver Dis, 2016
Breath Analysis
Liver disease

- 22 patients with hepatic encephalopathy (HE; 13 covert, 9 overt)
- 20 healthy controls

Graphs:

a) **glmnet (auc=0.84) (95% CI: 0.75, 0.93)**
 - Sens: 88% (73%-95%)
 - Spec: 68% (51%-81%)
 - HE vs HC

b) **glmnet (auc=0.71) (95% CI: 0.57, 0.84)**
 - Sens: 88% (73%-95%)
 - Spec: 68% (51%-81%)
 - Covert vs overt

Breath Analysis
Renal failure

- 86 patients with end stage renal failure
- 26 healthy controls

- Five VOCs:
 - Ammonia
 - Acetaldehyde
 - 2-propanol
 - NO$^+76$
 - O$_2^+50$

Breath Analysis
Neurological disease

- 39 patients with Alzheimer’s disease
- 16 patients with Parkinson’s disease
- 35 healthy controls
Breath Analysis
Infectious disease - tuberculosis

- *Mycobacterium tuberculosis*
- Sputum test: 62% sensitivity
- Breath:

![Graph](image)

Sens: 81%
Spec: 79%
AUC: 0.92

Sahota et al. Tuberculosis, 2016
VOC Analysis
Infectious disease – *C. difficile*

- 213 samples analysed
- 71 confirmed *C. difficile* positive microbiological evaluation

Sens: 92%
Spec: 86%
AUC: 0.93

Breath Analysis
Infectious disease – *Cystic fibrosis*

- 13 CF patients *S. aureus* +
- 5 CF patients *S. aureus* -
- Sens: 100%, spec: 80%

- Headspace mono- and coculture of *P aeruginosa* and *A fumigatus*

Future Perspectives

- Challenges: technical

TABLE 2

<table>
<thead>
<tr>
<th>Category</th>
<th>Key Factors in Breath Collection and Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air sampling</td>
<td>Direct sampling</td>
</tr>
<tr>
<td></td>
<td>Reusable collection bag with thorough cleaning</td>
</tr>
<tr>
<td>Air collection device</td>
<td>Disposable collection bag</td>
</tr>
<tr>
<td></td>
<td>VOCs derived from collection device</td>
</tr>
<tr>
<td></td>
<td>Disposable collection device</td>
</tr>
<tr>
<td></td>
<td>Reusable collection device (cleaning agent VOCs)</td>
</tr>
<tr>
<td>Air collection method</td>
<td>Nasal/oral sampling</td>
</tr>
<tr>
<td></td>
<td>Tidal breathing vs forced exhalation</td>
</tr>
<tr>
<td></td>
<td>Exhalation after breath hold</td>
</tr>
<tr>
<td></td>
<td>Forced exhalation</td>
</tr>
<tr>
<td></td>
<td>Flow</td>
</tr>
<tr>
<td>Environmental influences</td>
<td>Baseline samples of environmental air</td>
</tr>
<tr>
<td></td>
<td>Wash-out period by inspiratory VOC filter</td>
</tr>
<tr>
<td>Storage</td>
<td>Direct analysis</td>
</tr>
<tr>
<td></td>
<td>Storage on sorbent tubes for prolonged stabilization of VOCs</td>
</tr>
</tbody>
</table>

A European Respiratory Society technical standard: exhaled biomarkers in lung disease

Ildiko Horváth (task force co-chair)1, Peter J. Barnes (task force co-chair)2, Stelios Loukides (group chair)3, Peter J. Sterk (group chair)4, Mariann Högman (group chair)5, Anna-Carin Olin (group chair)6, Anton Amann7, Balazs Antus8, Eugenio Baraldi9, Andras Bikov10, Agnes W. Boots11, Lieuwe D. Bos12, Paul Brinkman13, Caterina Bucca14, Giovanna E. Carpagnano14, Massimo Corradi15, Simona Cristescu16, Johan C. de Jongste17, Anh-Tuan Dinh-Xuan18, Edward Dompeling19, Niki Fens20, Stephen Fowler21, Jens M. Hohlfeld21,22, Olaf Holz21, Quirijn Jøbsis23, Kim Van De Kant19, Hugo H. Knobe24, Konstantinos Kostikas25, Lauri Lehtimäki26, Jon Lundberg27, Paolo Montuschi28, Alain Van Muylen29, Giorgio Pennazza30, Petra Reinhold31, Fabio L.M. Ricciardolo32, Philippe Rosias19,39, Marco Santonico30, Marc P. van der Schee4, Frederik-Jan van Schooten11, Antonio Spanevello34, Thomy Tonia35 and Teunis J. Vink24

Van der Schee et al. Chest. 2015
Future Perspectives

- Challenges: environment

FACTORS THAT CAN CONTRIBUTE TO THE VOC PROFILE

- GENDER
- AGE
- SMOKING
- EXERCISE
- TIME OF DAY
- BMI
- DRUGS
- TIME SINCE EATING
- TEETH BRUSHING
Take Home messages

• VOC analysis is promising for a plethora of applications
 • Breath
 • Headspace (skin, urine, stool, cell lines, tissue)
• No single biomarker fits all
 • Focus on combinations
 • Increase number of patients
• Standardisation needed
 • Sampling
 • Underpowered clinical trials
 • Current ERS technical standards on exhaled biomarkers
• Focus on combining techniques
 • Optimal information gathering
• Statistically challenging
 • High throughput
 • ‘omics’ approach
VOC analysis in health and disease