Frontotemporal dementia: Insights into its genetic etiology and molecular biology

Julie van der Zee, PhD
MAPT: Microtubule Associated Protein Tau

- 1892: A. Pick → Pick’s disease
- Accumulation of filamentous, hyperphosphorylated MAPT protein in neurons and glia = FTLD-tau
- 1998: mutations in MAPT gene

- MAPT protein:
 - abundantly expressed in CNS
 - interacts with microtubules
 - regulates axonal transport

- MAPT gene:
 - on chromosome 17q21
 - mutations: missense, deletion, silent, splice-site

(binding microtubules, form filaments, alter 4R/3R tau)

Neurodegeneration
Genetic discoveries in dementia research

Alzheimer dementie

Aloïs Alzheimer

1906

1980

1990

2000

2010

MAPT

VCP

CHMP2B

C9orf72

PSEN1, PSEN2

APP

CLU, CR1, PICALM

TREM2

PTK2B, SORL1, SLC24A4-RIN3, DSG2, INPP5D, MEF2C, NME8, NYAP1, MADD, FERMT2, CASP4, ZCWPW1 locus, HLA-DRB5/HLA-DRB1 locus, CELF3 locus

Frontotemporale dementie

Arnold Pick

1892

1980

1990

2000

2010

FTLD-TDP

FTLD-tau

GRN

MAPT

VCP

UBQLN2, SQSTM1

Molecular pathology of FTLD

--- protein inclusions in degenerating neurons

3R, 3 repeat tau isoform; 4R, 4 repeat tau isoform; aFTLDU, atypical FTLD with ubiquitin-positive inclusions; AGD, argyrophilic grain disease; BIBD, basophilic inclusion body disease; CBD, corticobasal degeneration; FET, fused in sarcoma, Ewing’s sarcoma, TATA-binding protein-associated factor 15; GGT, globular glial tauopathy; NIFID, neuronal intermediate filament inclusion disease; PiD, Pick’s disease; PSP, progressive supranuclear palsy; TDP, transactive response DNA binding protein; UPS, ubiquitin proteasome system.

Mackenzie and Neumann, J Neurochem 2016
Molecular pathology of FTLD

- protein inclusions in degenerating neurons

3R, 3 repeat tau isoform; 4R, 4 repeat tau isoform; aFTLDU, atypical FTLD with ubiquitin-positive inclusions; AGD, argyrophilic grain disease; BIBD, basophilic inclusion body disease; CBD, corticobasal degeneration; FET, fused in sarcoma, Ewing’s sarcoma, TATA-binding protein-associated factor 15; GGT, globular glial tauopathy; NIFID, neuronal intermediate filament inclusion disease; PiD, Pick’s disease; PSP, progressive supranuclear palsy; TDP, transactive response DNA binding protein; UPS, ubiquitin proteasome system.

Mackenzie and Neumann, J Neurochem 2016
<table>
<thead>
<tr>
<th>FTLD-TDP Classification</th>
<th>Cortical Pathology</th>
<th>Common Phenotype</th>
<th>Associated Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>- many intraneuronal cytoplasmic inclusions (NCI)</td>
<td>bvFTD</td>
<td>GRN Tbk1 (C9orf72)</td>
</tr>
<tr>
<td></td>
<td>- many short dystrophic neurites (DN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- few neuronal intranuclear inclusions (NII)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- in superficial cortical layers (predominantly layer II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B</td>
<td>- many NCI</td>
<td>bvFTD</td>
<td>C9orf72 Tbk1</td>
</tr>
<tr>
<td></td>
<td>- few DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- no NII</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- in both superficial and deep cortical layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type C</td>
<td>- few NCI</td>
<td>SD</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>- many long DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- no NII</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- in superficial cortical layers (predominantly layer II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type D</td>
<td>- few NCI</td>
<td>Familial IBMPFD</td>
<td>VCP</td>
</tr>
<tr>
<td></td>
<td>- many short DN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- many lentiform NII</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- most abundantly in neocortex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type E</td>
<td>- granulofilamentous neuronal inclusions</td>
<td>bvFTD</td>
<td>(C9orf72)</td>
</tr>
<tr>
<td></td>
<td>- grains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- oligodendroglial curvilinear inclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- widespread distribution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Progranulin, GRN

Belgian FTD founder family identifies progranulin gene

Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21

GRN IVS1+5 G>C; p.0 null mutation

GRN mutations are loss of function mutations

- **Loss-of-function mutations (LOF)**
 - frameshift, nonsense, splice site mutations → create a premature termination codon (PTC)
 - PTC transcripts are preventively degraded by Nonsense Mediated RNA Decay or MND
 - → 50% loss of protein levels → leads to disease through haploinsufficiency
Belgian GRN IVS1+5 G>C founder mutation

- 29 branches (families and index patients)
- DNA of 175 relatives, incl. 79 carriers
- So far, Belgium-Flanders-only
- Onset age: (n=79)
 - 63 ± 8 yrs, range 45 - 80 yrs
- Disease duration: (n=66)
 - 6.1 ± 3.8 yrs, range 1 - 20 yrs
- Age at death: n=72
 - 70 ± 7 yrs, range 49 - 85 yrs
Clinical heterogeneity

Wauters, Van Mossevelde et al., 2018

ALS-FTD or FTD – ALS spectrum

ALS patients
- 15% have FTD (with TDP43-positive inclusions in cortical neurons)
- 50% have evidence for more subtle cognitive and/or behavioral dysfunction
 -> ALS patients with some cognitive or behavioral changes but that do not meet the criteria for FTD: ALS-Ci/Bi (ALS with cognitive or behavioral impairment).

FTD patients
- 15% also have ALS
- many more have some evidence of lower motor neuron involvement.
 -> FTD patients with evidence of mild motor neuron involvement (clinically or on electromyographs) without developing ALS: FTD-MND

Patients with clinical evidence for both disorders are said to have ALS-FTD or FTD-ALS

Adapted from Robberecht & Philips, Nat Rev Neurosc 2013
Chromosome 9 open reading frame 72, **C9orf72**

- **Repeat expansion in C9orf72**

 - 2011: hexanucleotide repeat (GGGGCC) expansion in C9orf72
 - Chromosome 9 open reading frame 72
 - Chr9p21, non-coding repeat in promotor region
 - Most common genetic cause of FTD and ALS
 - general
 - FTD: 4-29%
 - ALS: 11%
 - FTD-ALS: 17-28%
 - familial
 - FTD: 29%
 - ALS: 38%
 - FTD-ALS: up to 88%

Dejesus-Hernandez et al., Neuron 2011; Renton et al., Neuron 2011; Gijselinck et al., Lan Neurol 2012
FTD – ALS spectrum

Repeat expansion mutation: like for C9orf72 (GGGGCC repeat)

- unaffecteds: 2 – 24 copies of GGGGCC
- patients: 100eds – 1000ends copies of GGGGCC

Mutation mechanism

C9orf72 gene

Exon 1a 1b 2 3 4 5 6 7 8 9 10 11 2 Kb

3X → >60X → >1000X

AGTGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCCCGGGCC

CGATAA GGGGCC GGGGCC

CGATAA GGGGCC GGGGCC

CGATAA GGGGCC GGGGCC

CGATAA GGGGCC GGGGCC

CGATAA GGGGCC GGGGCC

CGATAA GGGGCC GGGGCC

CGATAA GGGGCC GGGGCC
C9orf72 repeat size and disease anticipation

- Expansion varies in patients from 45 to 1000 ends of repeat units.
- Onset age: 29 to 80 years (average 56.1 yrs)

Research question: Is there clinical evidence for disease anticipation?

- Investigated 36 extended families including 222 C9orf72 expansion carriers
- Over 4 generations, average onset decreases from 62 years to 49 years

Onset Age in Successive Generations

Van Mossevelde et al., JAMA Neurol 2017

Tank-binding kinase 1, TBK1
TBK1 a novel player in the FTD-ALS spectrum

- 13 patients: 10 FTD or Dem, 2 ALS, 1 FTD-ALS
- Onset 69.1 ± 7.7 years
- Duration 6.4 ± 3.9 years
- Early memory loss and disorientation
- Early behavioral problems

Gijselinck et al., *Neural 2015*
Large-scale genetic screen of $TBK1$

- 2538 patients: 1873 FTD, 111 FTD-ALS and 554 ALS
- 2864 control individuals

$van
der
dee
tzwie,
Hum
Mutat
2017$

Conclusion $TBK1$ loss-of-function

- PTC mutations \rightarrow loss-of-transcript
- Inframe deletions \rightarrow loss-of-protein
 - Belgian FTD-ALS family: $TBK1$ p.Glu643del
- Some missense mutations \rightarrow loss-of-function

- Pathology: TDP-43 type B

- Mutation frequency for $TBK1$ LoF mutations
 - 0.7% overall (19/2538)
 - 0.4% in FTD
 - 1.3% in ALS
 - 3.6% in FTD-ALS patients
Variability in onset age and disease penetrance

FTD genetic diagnostics, where are we today?

- Up to 43% of FTD patients have a positive family history
 - 10-27% autosomal dominant
- Known genes explain
 - 45% - 50% of familial FTD
 - 20% of all FTD
 - Mutations also regularly found in 'isolated' patients
 - small families
 - reduced penetrance
 - FTD-ALS spectrum phenotypes

Explained: 47%
Unexplained: 53%
FTD genetic diagnostics, where are we today?

- Up to 43% of FTD patients have a positive family history
 - 10-27% autosomal dominant

- Known genes explain
 - 45% - 50% of familial FTD
 - 20% of all FTD
 - ! Mutations also regularly found in ‘isolated’ patients
 - -> small families
 - -> reduced penetrance
 - -> FTD-ALS spectrum phenotypes
ACKNOWLEDGEMENTS

Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology
Christine Van Broeckhoven
Sara Van Mossevelde
Eline Wauters
Yalda Baradaran-Heravi
Cemile Kocoglu
Lubina Dillen

VIB CMN Neuromics Support Facility

Institute Born-Bunge Biobank, University of Antwerp
Peter Paul De Deyn
Sebastiaan Engelborghs
Patrick Cras
Jean-Jacques Martin
Anne Sieben

BELNEU Consortium
EU EOD Consortium

Research participants, patients and families